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Abstract

The area between the continental shelf and the Gulf Stream is known as the slopewater
region. In the past fifty years several experiments and studies of this region have taken
place with the Mid-Atlantic Continental Slope and Rise (MASAR) experiment being one
of the most recent. Csanady and Hamilton (1988) compiled all the known information
and data from the slopewater region and developed a simple dynamical model of the
flow. Based on this model’s transport stream function and Stommel’s Gulf Stream
model, finite centered differencing was used to develop a numerical scheme of slopewater
circulation.

The model was first developed using Stommel’s parameters for circulation within
the North Atlantic Gyre. Stommel’s model was used as the basis for the new scheme
in order to calibrate the model with his exact solution of the streamfunction for the
North Atlantic Gyre. Once verified, Stommel’s parameters were replaced by Csanady
and Hamilton’s values for slopewater. This is a report on the development of a new
numerical model. It is also a comparison of the new scheme to both Csanady and
Hamilton’s model and an observational schematic for the region from the MASAR
experiment. '

Keywords: Circulation-Slopewater-Modeling-Physical Oceanography



1 Circulation- A Short History

Many studies have been carried out on wind-driven circulation over the past fifty
years. In particular, Sverdrup wrote Wind-Driven Currents in a Baroclinic Ocean: with
Application to the Equatorial Currents of the Eastern Pacific in 1947. He assumes the
follwing conditions:

e the pressure gradient is balanced solely by the Coriolis force,

e horizontal velocities and pressure gradient disappear with depth,
e lateral stresses are neglected,

¢ and the flow is steady-state.

Stommel follwed up Sverdrup’s work with his publication of The Westward Intensifi-
cation of Wind-Driven Ocean Currents in 1948. In order to counterbalance any accel-

to develop a general solution to ocean gyres and western currents. Two years later in
1950, Munk wrote On the wind-driven ocean circulation, In his research, Munk com.-
bines the work of Sverdup and Stommel to produce a more accurate representation of

force, a basin that encompasses both northern and southern hemispheres, and uses the
observed wind instead of a sinusoidal function.

Small contributions were made to the understanding of the Gulf Stream and slope-
water region over the next thirty years. The next large contribution was added more
recently. In the mid-80’s, the Mid-Atlantic Continental Slope and Ocean Rise (MASAR)
experiment was carried out. This program was designed to meet the ob Jjectives of the
Mineral Management Service (2 U.S. goverment department) which were

* to determine the general circulation features on the continental slope and rise

¢ to define and quantify the variability of winds, currents, transports, and other
physical properties in these areas

* todetermine the effect of the slope/rise circulation features on the physical oceanog-
raphy of the Middle Atlantic Continental Shelf,
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Figure 1: Schematic of Observational Dzta in the Slopewater Region from MASAR



The MASAR experiment involved several cruises in the region to put into place many
data collection tools such as current meters and to collect water samples and real time
data. Csanady was the key person for the interpretation of data for upper slope circu-
lation in the MASAR experiment. He compiled all the major sources of information on
the slopewater region and produced a simple, linear dynamical model of circulation in
the area. His model is developed under the following assumptions:

e the flow is steady-state,
e Coriolis is balanced by wind stress,
¢ and the region is rectangular.

The model also includes non-zero boundary conditions for the streamfunction. Csanady
and Hamilton’s paper Circulation of Slopewater (1988) included an observational sce-
matic (Figure 1) from the MASAR experiment showing the details of Slopewater circu-
lation as it thought to occur. This paper is the springboard for the numerical scheme
that was developed to reproduce this schematic.

2 The Model

The development of the model began with the following basic assumptions:
e the water parcel is a homogeneous layer of incompressible fluid,
¢ the region is enclosed in a rectangular box,
o there are zero boundary conditions,
¢ and the flow is steady-state.

The density is assumed to be constant throughout the parcel because it is a relatively
shallow layer of approximately 500 meters. Therefore it is reasonable to assume incom-
pressibility. The formulations that are the foundation of modeling slopewater circulation
are presented in sections 2.1.through 2.4 of this paper.

2.1 Compressibility
The‘compressibility of a liquid 8 is defined by

R GDE--00-@ o
av

where § is the compressibility, V is the volume, p is the pressure, ¢ is the change of
volume with time, and % is the change of pressure with time.
If the fluid is incompressible then 8 must be zero. Therefore
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If the mass of fluid is constant over volume, V and density is p=m/V then

1dp Vd (m 1dV

—— e =} ===——=0

pdt mdt (V) V dt (3)
Hence incompressibility occurs when % =0or -1‘;%% = 0 [Pond and Pickard, 1983] .

Incompressibility is an important assumption in this problem for it allows the stream
function, %, to exist.

2.2 Stream Function

The total material derivative of the fluid density is known to be

Dp _8p .
Dt~ Bt +7-Vp . (4)
For an incompressible fluid, the density does not change. In this case
Dp
Di =) ’ (5,)
The equation of continuity which is given by
o0 | s,
b + V(pt)=0 (6)
can be expanded in the form of
5 :
a—’t’+6-vp+pv-z7=o. (7)

By substitution, the equation of continuity of an incompressible fluid becomes
V.-9=0, (8)

which is expressed below for a two-dimensional flow velocity , 7 = (u,v) as

ou Ov
7z + i 0 (9)
For the equation of continuity to be satisfied, let u = %-"‘i and v = —gix, where 1 is the

two-dimensional streamfunction of fluid dynamics. The velocity field ¥ is now expressed
in vector form
oY Oy

3y oz
When % is a constant, the streamfunction produces curves known as streamlines. A

streamline is a curve in space drawn so that the velocity vectors are tangent to the
curve. This allows the velocity field to be represented by streamlines.

7= (10)



2.3 Stommel’s Gulf Stream

Stommel’s Gulf Stream model ié the pattern for the slopewater model. His model is
based on the following assumptions:

e the ocean is rectangular with the y-axis pointing northward and the x-axis east-
ward

¢ the boundaries of the rectangle are between 0 < z < A and 0 <y<b
¢ the ocean is a homogeneous layer of constant depth D when at rest

¢ when there are currents, the total depth is D + h where the depth varies by h
which is much smaller than D

e functional form of the wind stress acting over the area is — F cos(Z¥)

o the frictional dissipative forces are —Ru and —Rv where R is the coefficient of
friction and u and v are the velocity components

o the Coriolis parameter f is introduced as a function of y.

The steady-state equations of motion are written in the following manner:
The equation for motion in the y direction is

h
0:f(D+h)v—Fcos(%)—Ru—g(D-}-h)g—z (11)
The equation for motion in the x direction is

O=—f(D+h)u—Rv—g(D+h)-g—Z. | (12)

These equations are cross-differentiated and the equation of continuity is applied to the
equations of motion resulting in

v(D + h) (g—i) + (%) sin (%) +R(g—:—%~) =0 (13)

To a first approximation, h is negligible compared to D. This allows the previous equa-
tion to be rewritten as

. [Ty ov 8u_
av+751n(b)+0—2—%_0 (14)

dy
The ocean is considered to be incompressible which allows the introduction of the stream

function. From the previous equation, the general equation is stated as

where a = (%) (Qi) and v = -I}‘;—:.

7} .
Vi + a% = vsin (Zrb—y) , (15)



and assumed boundary conditions are

$(0,0) = (A1) = $(z,0) = Y(z.B) =0 . (16)

Stommel solves the nonhomogeneous differential equation by inspection and separation
of variables for ¢ (See Appendix B for an example of this method.). The resulting
stream function is

where p = (—}%) andg=1-p :
In order to analyze the stream function numerically, Stommel introduced the following
parameters: A = 10%m, b = 27 x 108cm, D = 2 x 10%cm, F = ldyne/em?, and
R = 0.02. F and R were picked arbitrarily in order to produce the correct physical
features.

When Coriolis is considered to be a linear function of latitude, the streamlines
indicate an intensification of current velocities along the western boundary. This is the
region of the Gulf Stream [Stommel, 1948].

2.4 Csanady’s Transport Stream Function

In Csanady and Hamilton (1988), a transport stream function for slopewater circu-
lation was introduced. It is given by

oYof oYaf _

9z 6y 63/ 0z
where W is the value for the wind stress curl over the rectangular region. Here, % is
the stream function. The approximations to the Coriolis acceleration are —L and —L
The transport stream function is subject to the following boundary condmons

(18)

0 if x=0, O<y<b/2
0 if y=0, 0<x<a

p=4 -KZ2  ifx=0, b/2<y<b (19)
G¥ if x=a, 0<y<b

(G+ K)Z if y=b, 0<x<a

where G is the inflow from the Gulf Stream, K is the inflow of the Coastal Labrador
Sea Water, x and y are the coordinates, a is the length of the box along the x-axis, and
b is the length of the box along the y-axis.

The differential equation of Csanady and Hamilton was developed using several impor-
tant assumptions that are mentioned below:

e the dimensions of the idealized basin are 200 km wide by 1600 km long
e the mean depth is 500 m overlying an inert, deep, very heavy water mass

e the Coriolis parameter is f = 10~%s~! which increases northward at the rate of
B=1.6x10"11m"1s"1
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¢ the wind stress curl is one of the driving factors of the circulation,
e the flow is steady-state, and

* a rotated coordinate system is used where the cartesian coordinate system is
rotated 67 deg from north.

By inspection, one can find the differences between the equation stated by Csanady
and Hamilton and the equation given by Stommel in the previous section. Csanady and
Hamilton discount any frictional dissipative force by discarding the Laplacian term.
This helps to simplify the problem and the numerics associated with it. The bound-
ary conditions are non-zero indicating an influence imposed upon the body by cur-
rent flows. The wind stress curl is a constant independent of the y variable. (See
[Csanady and Hamilton, 1988] for more details.)

3 Discretization

The first step in developing the numerical scheme is to discretize a differential equa-
tion which describes the flow. The equation selected was a compilation of Stommel’s
streamfunction and Csanady and Hamilton’s stream function. The equation introduced
in the previous section was modified to include a frictional dissipative force with the ad-
dition of the Laplacian. The differential equation that was the basis for all calculations
is

Vit ap, =W (20)

where ¢ and « are arbitrary constants and W js the wind stress curl.

3.1 Rotation of Coordinates

The previous equation is oriented in the North-South coordinate system. -To make
the equation applicable to the slope sea region and for better comparison to Csanady
and Hamilton’s equation, it is necessary to rotate the coordinates by 67 deg from North.
The rotation was accomplished in the following linear. In general:

I .
[zIJ:[cos.a smq}[xJ, (21)
y —sina cosa Y

z' = zcosa + ysine, (22)

where

and
¥ = —zsina + ycosa (23)

are the rotated coordinates. In the slopewater case:

g’} _ | cos(2r—a)  sin(27 — ) T | :
[ y' } = [ -sin(27rfa) c;s(2w-— Z) J [ y J (24)
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Using trigonometric identities, the previous equation becomes

i - .
[zllzlc?sa sma] lx] (25)
v sina  cosa Y
Here the rotated coordinates are given by

z' = rcosa — ysina, (26)

vy = zsina+ ycosa (27)

By utilizing the previous two identities, it is possible to rotate Stommel’s equation
into Csanady and Hamilton’s region for Slopewater. By performing this operation, it
becomes apparent how the slopewater transport function was developed. The mathe-
matical operations are outlined below:

Y(z,y)=Y'(z',y) (28)

oy’ 0z’ oy 0y’

Ya(2,9) = 55—+ B (29)

¥y = %%cosa+g—j,’sina (30)

Yoz = a%(g—gcosa+g—35ina>. (31)

Let cosa = c and sina = s, then the second derivatives of the streamfunction become
b=-Ghs s e (34)

Py = ¢ g;'f’z' - 2cs a‘fg;, +5° ‘;i’f;' (35)

The Laplacian V24 is defined to be ., + 1,,. When this is performed on the equa-
tions for rotated coordinates, the sine and cosine terms drop out leaving the following
equation:
"/):c:: + '@byy = _-’;_-'z'w;'y' (36)

From this point onward, all references to x,y,and ¢ will be assumed to be in the rotated
coordinate system unless stated otherwise.

The new equation in the rotated coordinate system becomes by substitution of the
previous equation into Csanady and Hamilton’s transport streamfunction

E(Vzz + Vyy) + a(cthz + stpy) = W (37)
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3.2 Finite Differences

Finite differencing is a numerical method used to describe a continuous region with
discrete points. At each point there is an approximated value which describes the do.
main. A truncation error is produced for each approximation. This will be the difference
between the exact solution and the numerical scheme. The method of approximation
is based on the expansion of the Taylor series. For centered differences, the Taylor
series is expanded both in the forward direction and in the backward direction, i.e.
u(z + Az,y) and u(z — Az, y), subtracted, and divided by twice the incremental step

- (See [Ames, 1992] for specific details.) .

For this problem the Laplacian of % and the first order derivatives of ¥ must be
approximated using the following finite centered differences (Appendix A):

i+l = 2%i + Y-
VYyy Bijt1 k_QJ = (38)
1 = 20 + Pia
'lf)zz ~ ¢+1 J fzj d’ 1,7 (39)
o Yiger =i
Yy = — (40)
by ~ Vit1,; — Yicrj (41)

2h
where h = ﬁ, k= mL_H, and i and j reference the discrete points within the domain.

These approximations are substituted into the transport streamfunction equation
with rotated coordinates. The finite differenced equation becomes

€ (¢i,1+1—2f;.j+¢i,j—1 + ¢a+1,j—21'1;;,j+¢a-1,,) +

o [b (y&u{#i—m) +s (ﬂaﬂ;ﬁ.‘,]‘-l)] =W

Solving for 4; ; one is left with the approximation of the domain at each point.

W a2 al a4 as
1/):',' =1 al Phit1 = H%bx‘,j—l - ;1—1-¢i+1,j - zz‘l'wi—lxi (42)
where al = —2¢ (Flﬁ"*' ZI’-")’“2= o ad= -5 ad= wt i and b= 5 - g2

3.3 Iterative Method

The iterative method used for the numerical scheme js the Gauss-Seidel method. This
method owes its derivation from the linear algebra equation that is given by AZ = &.
This method is known as the method of successive displacements or iteration by single
steps. Here, the calculations are based on the immediate use of the improved values
(See [Ames, 1992] for more details.). The computation utilizes the following equation:
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i— k n ‘ k-1
) Zi=11(afiz§' )) - Zj=i+1(aij$§ )+ b;)

gy

(43)

where k is the number of iterations and i and j correspond to the row and column entries
in the matrix. _

In the numerical scheme for slopewater circulation the number of iterations were
determined by the numerical output. The program, written using the Mathematica
package and run on a SPARC20 Sun station, was instructed to continue computation
until the maximum error was on the order of 10~7.

4 Calibration Techniques

Numerical schemes must be validated before one can feel confident that the output of
the model is indeed reasonable. This was accomplished by two methods of calibration.
The first was a comparison to the Stommel Gulf Stream model. The second was a
boundary condition verification.

4.1 Slopewater vs. Gulf Stream

The first calibration was a comparison of numerical output to an exact solution.(See
Figure 2.) The exact solution to Stommel’s differential equation discussed previously
was produced. This was then compared to the numerical output when the parameters of
Stommel’s model were introduced into the model. In addition the boundary conditions
were set equal to zero and the forcing term was set equal to a sine function instead of
a constant. The absolute value of the difference between the maximum values of the
exact solution and the numerical solution was then calculated. The difference was on
the order of 108 after 500 iterations.

4.2 Boundary Verification

The second calibration was a boundary condition verification. The stream function
was determined to be (z,y) = sin(3E) sinh(%¥) by separation of variables. (See Appen-
dices B and C.) The first normal mode was given as the northern boundary condition
with all other boundaries being zero. In the numerical scheme, W, a, and s were set
equal to zero while ¢ was set equal to one. The numerical solution was once again
compared to the exact solution (Figure 3).

5 Discussion of Model Outputs

Several runs of the model were performed using various parameters. The first set
of parameters was based solely on the constants and boundary conditions given by
Csanady and Hamilton. The second set of parameters was a combination of Csanady
and Hamilton’s parameters and self-imposed boundary conditions.
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Figure 2: Stommel’s model produced by the numerical mode].
The lines represent the streamlines. The different shades represe
the streamfunction. The axes represent the dimensions of the ca]

(See Appendix D.2))
nt different values of
culated matrix.




Exact Contour

Figure 3: Boundary Verification by comparison of the exact solution of a specified
streamfunction to the numerical solution of the same streamfunction. The curves are
streamlines with different shades indicating different values of 1. The exact contour has
axes represented in units of length. The numerical solution has axes which represent
the dimensions of the matrix.(See Appendix D.1 .) '
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5.1 Csanady and Hamilton’s Parameters

Three different products were produced by varying the Gulf Stream constant, G,
which is a value of flux rate of the Gulf Stream. In the case where G = 2 x 105m3s~1,
there is an intense crowding of stream lines near the northwestern boundary indicating
a large velocity gradient. There is a small deflection eastward of the Gulf Stream. ( See
Figure 4.) As G increases to 6 x 10° and 107m3s~! there is an increased deflection of
the Gulf Stream eastward and a decreasing velocity gradient in the northwest corner.
(See Figures 5.and 6.). These products can be compared to the outputs of Csanady
and Hamilton. A comparison shows that both models indicate greater deflection of the
Gulf Stream with increased flux rate.

The boundary conditions imposed do not create a velocity field which corresponds
to the field that is actually observed. ( See Figure 1.) The velocity field only represents
a small section of the slopewater region. In order to more accurately represent the
circulation which is known to occur, new boundary conditions were developed and
introduced into the model.

5.2 New Boundary Conditions

New boundary conditions were developed from inspection of the observational scheme.
Based on the actions of the streamlines, functions were chosen to approximate the
motion of the flow. The boundary condition on the continental shelf was determined
to be ¥(0,y) = 0 because there is no fluid flow across the boundary, only parallel to
the shelf. The boundary condition on the southwestern edge ¥(z,0) = 0 because the
flow changes directions but once again does not cross the boundary of the region. The
final two boundaries were approximated by functions dependent on either x or y. The
Gulf Stream side has two boundary conditions. For ¥(1,y), when 0 < y < b/A, ¥ =0.
When b/ < y < b/2), ¢ is approximated by a line. The Gulf Stream is represented
in this fashion because after the current flows along the region for half of the distance,
the stream enters into the slopewater. The northern edge must represent the change
in direction of the fluid flow due to the exit of the Gulf Stream and the entrance of
the Coastal Labrador Sea Water. This physical process is represented by a quadratic
equation. (See Appendix C.)

The first run of the new boundary conditions (See Figure 7.) showed the development
of a western gyre and the entrance of the Gulf Stream into the region. Because the
output did not closely resemble the schematic (See Figure 1.), constants then had to be
varied until the combination was discovered which would more accurately represent the
schematic (Figure 7).

6 Data Analysis

To test the credibility of the numerical calculations, model outputs must be compared
to real numbers. Data for comparison comes directly from the MASAR experiments.
Charts of the region showing current meter deployment contain velocity vectors for
the upper level currents. To retrieve the data, the resultant speed was determined by



Figure 4: Slopewater model output (See Appendix D.4.) when using Csanady and
Hamilton’s parameters and boundary conditions. In this case, G is 2 X 108m3s~1. The
curves are streamlines. The orientation of the output is: the northern edge is to the
right of the page and the Gulf Stream is to the bottom. This orientation is the same
for the next two products. The axes indicate the dimensions of the calculated matrix.
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Figure 5: Slopewater output when using Csanady and Hamilton’s parameters and
boundary conditions. In this case, G is 6 x 10°m3s~! with the curves indicating the
streamlines. The axes indicate the dimensions of the calculated matrix.
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Figure 6: Slopewater output when using Csanady and Hamilton’s parameters and
boundary conditions. In this case, G is 107m3s~!. The level curves are streamlines.
The axes indicate the dimensions of the calculated matrix.




 Figure 7: Slopewazer ———n = with new boundary conditions imposed. The level
curves are streamiizss. "= :vas show the number of nodes used in the matrix. The

orientation of the cum== = . aorthern edge is to the right of the page and the Gulf
Stream is to the berve— — -~ Dage. Some important features in the output are the
closed gyre in the sczrme=— ==riien of the slope region and the intrusion of the Gulf
Stream into the regaw. TEe= ~ompared to figure 1, one notices that the features are

similar but the Ccaszz: —=Z==a>>> Current is overpowered by the Gulf Stream. (See
Appendix D.4).
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Figure 8: Slopewater circulation using new boundary conditions. This output is the
result of many runs looking for the coefficients that would produce features that closely
resemble Figure 1. Note the closed gyre, the intrusion of the Gulf Stream, the Coastal
Labrador Current, and what appears to be the change in direction of the Coastal
Labrador Current. The axes indicate the number of nodes. The level curves are stream-
lines. The orientation of the box is as follows: the northern edge is to the right of the
page and the Gulf Stream is to the bottom of the page.
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measuring velocities on a chart within the MASAR experiment report using the given
scale. In order to compare the velocity vectors to the stream function, the resultant
vectors had to be broken down into the u (the velocity in the x direction) and v (the
velocity in the y direction) components. The stream function must be differentiated to
derive the numerically calculated u and v components.

7 Naval Applications

The understanding of the coastal environment is important for military operations
in the littoral environment. The dynamics within the area of operation affect many
different warfares. In particular, knowledge of currents can be beneficial for successful
mine operations, submarine warfare and anti-submarine warfare. Currents can even ajd
or hinder navigation.

The slopewater region is potentially a very important tactical region. The entire
eastern seaboard is bounded by the water mass. The Gulf Stream has a large influence in
the region and warm core eddies are typically spun off in this area. These eddies and the
fast moving current of the Gulf Stream, if not fully understood, could hinder navigation
and mine sweeping. The change in the temperature profile alters the sound velocity
profiles when warm core eddies are interacting with the slopewater mass. This provides
submarines a better chance to remain undetected. Knowledge and understanding of the
circulation of the slopewater and how the eddies move within the circulation should give
the tactical commander a better idea of where to search for the enemy or where to hide.
The currents in the slopewater are not as fast along the shelf as they are along the Gulf
stream region. Understanding this and being able to determine the speed changes as
you move shoreward will benefit navigation.

The modeling of slopewater is applicable to many gyres throughout the world’s
oceans. The same techniques can be used to generate numerical schemes for any type
of wind-driven circulation. If the Navy is interested in better understanding the coastal
environments, numerical modeling is another approach that can be utilized.

8 Future Developments

The numerical scheme developed is highly simplified. It is two-dimensional, time
independent, and based on a limited number of physical parameters. The region is
rectangular and considered to be homogeneous and to have a constant depth. The wind
stress curl is constant and the flux rate of the Gulf Stream is constant. The dynamic
implications of warm core eddies and changes in temperature, pressure, and salinity are
ignored. '

In order to improve the model, each of these factors should be addressed. It is not
a reasonable expectation to have every influence play an accurate role in the modeling
of the region. At the present time, the knowledge and ability is unavailable to tackle
a problem of that magnitude. The parameters must be addressed either one or two at
a time. For example, the region could have non-rectangular dimensions developed and
the wind stress curl could be made into a function instead of a constant. There are
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many avenues of approach depending on the parameters of interest.

Other improvements could be made solely on the mathematical techniques of com-
putation. Speed of computation and truncation error can be improved in a number of
ways. The discretization method could be altered to produce a non-uniform grid which
allows for better mapping of the region of interest. The iterative technique could be
changed as well in order to increase speed of computation. There are several avenues of
approach to numerical improvements which develop in higher level mathematics.

The numerical scheme has considerable room for improvement. However, the work
accomplished is not trivial. The product resembles what is generally understood to be
true about the circulation in the region. Improvements would allow for more accuracy
and variation in the model outputs.
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A Development of Finite Difference Equations
Vz"ﬁ'i,j = 'w:c:cli,j + "/’yyli,j

h2 h3 h4
1,[)(12 +h, y) =v¢+ htl)z + awxz + §T¢zrr + Z'!"ﬂ[):z:a:a:x

h? h3 h4
"/}(I - h, Z]) =1- hd)z + E'ﬂbxz - §!_¢z:m: + Z!"‘/)a:ra::r

k2 k3 k4
1/’(55,3/ + k) =9+ l“/’y + E!'wyy + §?|¢yyy + ZTd’yyyy

k2 k3 k4
P(z,y — k)y=v -k, + '2'!'¢yy - §T¢yyy + Z!‘wyyyy

Add the four equations together to get the following;:

Yigy1,5 + Yic1,j + Yija + Yij-1 = 4% + R e + k1,

Therefore,
1
Yrz ~ h_2(¢i+1,j - 2¢"'-7. + ¢i—l'j)
1
¢yy ~ ?2_(1/)1.]+1 - 2¢,’J + ¢i,j—l)
Given

1
Pr ~ EE(%H,J‘ - Pi-1,5)

1
Py ~ 5;(¢i.j+l — i j-1)

m+41
Substitute into the PDE for slopewater circulation.

E(wzr + '(;byy) + a(c¢x + 3¢y) =W
€ (¢|‘Aj+1"2’£;)]+d’ilj—l + ¢.+1,J—2i’;d+¢-'—1,1 +
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(44)

o [c (¢-’+1,12—h¢.'—1,1) +s (11’1',1-{-12":1’1',‘1—1 )] - W

aly;; = W — a29; j41 — a3ty jo1 — a4y, — ad¢Pi1j




where al = —2¢ (

=g+

7{;'»—:

a3 =fr- &
at =t 5

{3}

a5=f;+g—h
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B Separation of Variables

Yz + wyy =0
Boundary Conditions
¥(0,y) =0
P(z,0) =0
Y(Ay)=0
P(z,b) =0
Suppose
¥ = F(z)G(y)
Then
’/)z:: = F”G
¢yy = FGII
Substitute :
F'G = ~FG"
Divide by F"G"
G F
G = —G”/I.
G+G'u=0

let VU= k

G(y) — e1sinh ky + ¢, cosh ky
"’.F= —/,lF”
pF"—F =90

F(z) =c3sinkz + c4cos kz
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The general solution of 1 becomes

¥(z,y) = (c1 sinh ky + ¢z cosh ky)(czsin kz + ¢4 cos kz)

To solve for the exact solution, boundary conditions must be applied.

P(0,9)=0

0 = (¢ sinh ky + ¢z cosh ky)(c3sin 0 + ¢4 cos0)
0 = c4(cq sinh ky + co cosh k)

C4=0

P(z,0)=0

0 = (c3 sinh 0 + ¢3 cosh 0)(c3 sin kz)
0= (c2)(c3 sin kz)
c2=0
P(z,y) = (c1 sinh ky)(cssin kz)

Let cjeca=c=1

P(A,y)=0

0 = sinh kysin kA

0 =sinkA
- kKx=nr
nw
k=—
A
Therefore the exact equation is
P(z,y) = sin B? sinh %

The boundary condition for ¢(z,b) is designated to be the first normal mode of the
exact solution. It is given by

. wx ., . wb
¥(z,b) = sin Tsmh 5y
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C Development of Boundary Conditions

The Shelf boundary condition is (0, y) = 0.
The Southern edge boundary condition is P(z,0) = 0.
The Gulf Stream boundary condition is %(1,y) = 0 when 0 < y < 2%

Where 55 <y < %, 9¥(1,5) = 3o(y - &)

6 is a point through which the line must pass. This point represents the maximum
flux of the Gulf Stream.

The Gulf Stream boundary orginates from the equation of a line which passes
through the points (-2%\-, 0) and (%, 6). The derivation is as follows:

y=mz+ B

_w( i)
TEWn

The Northern edge boundary condition is (z, 2= [ﬂf+_£2£)ﬁ!n_+6_52)] z? + [%%é;] z
This boundary condition is based on a quadratic equation which must pass through the
points (0,0), (£, ~7), and (1,6). The derivation is as follows:

f(z) = az? + bz 4 ¢, where a,b, and c are constants to be determined below.

To solve for the constants a,b, and c, substitute the coordinates into the quadratic

equation.
Solve for c.
at (0,0)

0=04+0+c¢

c=0

at (f,°77)

-1 = ag” + bg
at (1,9)

b=a+d

Therefore, a = § — b.
Solve for b.
—1 = a&® + b€ added to —6€2 = —af? — b2 yields

1+ 662 = b(€ + £2)



n+ 8¢2

b= re

Solve for a by substitution.

e 6(€+£%) — (n+6€%)

£+ ¢2
So, :
b {86+ € —(n+68%)
e 3) = Ere }x“’[

1+ 662 .
£+ ¢
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D Mathematica Programs

D.1 Boundary Verification

(* dimensions of box *)
lambda=10-9;

b=2%Pi*10~8;

(*depth of layerx)
d=2%10"4;

(*force of windx)

F=1,;

(*frictional dissipative term*)
R=0.02;

(* constants *)
gamma=F*Pi/R/b;
eta=N[Pi/b];
coriolis=10"(-13);

(* dimensions of matrix *)
m= 64;

n= 64;

(* incremental step size *)
k=b/lambda/(m+1);
h=1/(n+1);
disx=Table[N[i*h],{i,1,n}];

disy=Table[N[j*k],{j,1,m}];
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(* constants *)

eps= 1;

alpha= O;

(* cosine *)

c=0;

(* sine *)

s=0;

(* wind stress curl *)
W=Table[0,{i,m+2}];

(* constants *)

al= N[-2*eps*(1/(k~2)+1/(h"2))];
a2= N[eps/(k~2)+alpha*s/(2*k)];
a3= N[eps/(k~2)-alpha*s/(2*k)];
a4= N[eps/(h~2)+ alpha*c/(2*h)];
ab= N[eps/(h~2)- alpha*c/(2*h)];
al2 = a2/al; al3=a3/al; al4=a4/al; alb=ab/ail;
(* Boundary Conditions *)

gily.l = 0; f1[x_] = 0; g2[y.] = o;
f2[x_J= N[Sin[Pi x]*Sinh[Pi]];

psi=Table[0,{i,m+2},{j,n+2}1;

newpsi = psi;

Dolpsil[1,j+1]]=g1ldisy[[j11], {j, m}];
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Do[psil[n+2,j+1]11= g2[disy[[j11], {j, m}];

Dolpsil[[i+1,1]]= f1[disx[[i]]1], {i, n}];

Do[psil[i+1,m+2]]= f2[disx[[i]]], {i, n}];

Do[
Do[newpsi[[i,jll= H[[i-i]]/ai-a12*psi[[i,j*l]]—a13*psi[[i,j-1]]
-al4xpsi[[i+1,j1]-a15*psil[i-1,31], {i,2,n+1}, {j,2,m+1}];
error=Max [Abs[psi-newpsi]]; Print[error];
Dolpsil[i, jll=newpsil[i,jll, {i, 2, n+1}, {j, 2, m+1}],

{ii, 50}]

AA=ListContourPlot[Transpose[psi],ColorFunction->Hue]

exactsoln[x_,y_]=Sin[Pi x]*Sinh[Pi y*lambda/b]

zz=Table[exactsoln[disx[[i]],disy[[j]]J,{i,n+2},{j,m+2}]

ZZ=ContourP10t[exactsoln[x,y],{x,O,l},{y,O,b/lambda},
ColorFunction-> Hue]

AAA=Show[AA,PlotLabel->"numerica1"]
PSPrint [AAA]

zzz=Show[ZZ,PlotLabel->" exact"]

PSPrint [zzz]

Max [Abs [zz-newpsi]]

AAAA= Show[GraphicsArray[{{AAA},{ZZZ}}]J
Display[“graphi.ps", AAAA]

PSPrint[AAAA]




D.2 Stommel Verification

(* dimensions of box *)
lambda=2%10"7;
b=16%10"7;

(* depth of layer *)
d=2%10"4;

(* force of wind *)

F=1;

(* frictional dissipative term *)

R=0.02;

(* constants *)
gamma=F*Pi/R/b*lambda;
eta=N[Pi/b];
coriolis=10"(-13);

(* Gulf Stream flux rate *)

G=2%10"12;

(* Coastal Labrador Sea Water flux rate *)

K=4%10"12;

(* matrix dimensions *)
m= 64;

n= 64;

(* incremental step size *)
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k=b/lambda/(m+1);

h=1/(n+1);
disy:Table[N[i*ki,{i,1,m}];
disx=Table[N[-j*h],{j,1,n}];
(* constants *)

eps= 1;

alpha= 1*lambda;

(* cosine *)

c=0;

(* sine x)

s= 0;

(* wind stress curl =)
W=Table[1,{i,1,m}];

(* constants *)

~al= N[-2%eps*(1/(k"2)+1/(h~2))];

a2= N[eps/(k~2)+alphaxs/(2%k)];

a3

n

N[eps/(k~2)-alphaxs/(2%k)];

a4

N[eps/(h~2)+ alpha*c/(2%h)];

ab= N[eps/(h~2)- alpha*c/(2%h)];
al2 = a2/al; ai3=a3/al; al4=ad4/al; al5=a5/ai;

(* Boundary Conditions *)

gllx_1=0;g2[x_]=0;f1[y_]=0;f2[y_]=0;




psi=Table[0,{i,m+2},{j,n+2}];

newpsi = psi;
Dolpsil[[1,j+1]11=g1[disx[[§11]1, {j, n}I;
Dolpsil[m+2,j+11]1= g2[disx[[j]11, {j, n}];
Doflpsi[[i+1,1]1]= £1[disy[[i]1], {i, m}];
Dolpsil[i+1,n+2]]= £2[disy[[i]1]], {i, m}];

Do[
Do[newpsi[[i,jl]l= Wl[i-1]1]/a1-a12*psi[[i, j+11]-a13*psi[[i,j-1]]
-a14*psi[[i+1,3j1]-a15%psilli-1,31], {i,2,m+1}, {j,2,n+1}];
error=Max [Abs[psi-newpsil]; Print(error];

Dolpsilli, j1l=newpsilli,j11, {i, 2, m+1}, {j, 2, n+1}],
{ii, 50}]

AA=ListContourPlot[psi, PlotLabel->Stommel Verification,
ColorFunction->Hue,Contours->20]

PSPrint [AA]

Display["stommelver.ps", AA]
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D.3 Csanady’s Boundaries

(* Gauss~- Seidel, Stommel *)

(* The real psi is related to this by psi by
lambda* this psi(x/lambda, y/lambda)x*)

(* dimensions of box in meters *)
lambda=2%10"5;
b=16%10-5;scale=lambda/b;

(* depth *)

d=5%10"2;

(* force of wind *)

F=2.4%10"-10;

(* frictional dissipative term *)
R=0.0002;

(* constants *)
gamma=F/R;gammabar=gamma*lambda;

(* beta plane approximation for Coriolis *)
beta= 1.6%107-11;

(* constants *)

alpha= dxbeta/R; alphabar=alpha*lambda;
(* incremental step size *)
k=b/lambda/(m+1) ;

h=1/(n+1);

(* size of matrix =*)
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m= 41;

n= 41;

disx=Table[N[i*h],{i,1,n}];
disy=Table[N[j*k],{j,1,m}];

(* constants *)

eps= 1;

c= N[Cos[1.168]];

s= N[Sin[1.168]];

(* Gulf Stream flux rate *)

G= 2%10°6 (*m~3/s*);

(* Coastal Labrador Current flux rate *)
K= 4%10°6 (*m~3/s%*);

(* wind stress curl *)
W=Table[gammabar,{j,1,m}] (*m/s*);
(* constants *)

at= N[-2%eps*(1/(k~2)+1/(h"2))]1;

a2

i

Nleps/(k~2)+alphabar*s/(2%k)];

a3

N[eps/(k~2)-alphabarx*s/(2%k)];

e

a4= N[eps/(h~2)+ alphabar*c/(2*h)];

a5

N[eps/(h~2)~ alphabar*c/(2*h)];
al2 = a2/al; al3=a3/al; al4=a4/al; ailS=a5/ail;

(* Boundary Conditions *)
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g2ly_]l = Gxy/b;

gi[y;] = If[0 <y<b/2/1ambda,0,-K*(2*y*1ambda—b)/b/lambda];
filx.] = 0;

£2[x_] = (G+K)*x/lambda;

psi=Table[0.11,{i,n+2},{j,m+2}];
Dolpsil[1,j+111=g1[disy[[§111, {j, m}];
Do[psi[[n+2,j+111= g2[disy[[j1]1], {j, m}];
Dolpsil[i+1,1]]= f1[disx[[i]]], {i, n}];
Dolpsil[[i+1,m+2]]= f2[disx[[i]]], {i, n}];
oldpsi = psi; error =1; ii=i;

newdisx=Append [Prepend[disx, 0], N[1]];
newdisy=Append [Prepend[disy, 0], N[1/scalell;
Print[“m = “, m, " n= " ’~ n];
While[error > 10°-7,

Dolpsil[i,jl]=W[[j-1]1]1/at~a12*psi[[i,j+1]1]-a13*psi[[i,j-11]
-a14*psil[[i+1,3j]1]-a15+psi[[i-1,j1], {i,2,n+1}, {j,2,m+1}];

error=Max[Abs [psi-oldpsil];Print[ii," ", error];
Dololdpsil[i, j1l=psilli,jl], {i, 2, n+1}, {j, 2, m+1}];
ii=iji+1];

AA1=ListContourPlot [Transpose[psi], PlotLabel->"psi", Contours->20,
ColorFunction-> Hue, AspectRatio->3,ColorOutput->CMYKColor]

PSPrint [AA1]

Display["graph3.ps", AA1]
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D.4 New Boundaries

(* Gauss- Seidel, Stommel *)

(* The real psi is related to this by psi by
lambda* this psi(x/lambda, y/lambda)*)

(* dimensions of box *)
lambda=1;
b=10 ;scale=lambda/b;

(* depth *)

(* frictional dissipative term %)
R=1;

(* constants x)

gamma=F /R ; gammabar=gamma*1ambda;
beta= 1;

alpha= dsbeta/R; alphabar=alpha*lambda;
(* incremental step size *)
k=b/lambda/(m+1);

h=1/(n+1);

(* size of matrix *)

m= 64;

n= 32;




disx=Table[N[ixh],{i,1,n}];"

disy=Table[N[j*k],{j,1,m}];

(* constants *)

eps= 1;

c= N[Cos[1.168]];

s= N[Sin[1.168]];

(*

Gulf Stream flux rate *)

G= 1 (*m~3/s%);

(%

Coastal Labrador current flux rate *)

K= 1 (*m~3/s%);

(*

constants *)

mu=0.25;

eta=];

(* wind stress curl )

W=Table [gammabar,{j,1,m}] (*m/s*);

(* constants *)

al= N[-2xeps*(1/(k~2)+1/(h~2))];

a2

a3

ad

as=

al2

N[eps/(k“2)+a1phabar*s/(2*k)];

Nleps/(k~2)-alphabar*s/(2*k)];

N[eps/(h~2)+ alphabar*c/(2*h)];

Nleps/(h~2)- alphabar*c/(2%h)];

a2/al; al3=a3/al; al4=ad/al; ai5=a5/ai;
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(* Boundary Conditions *)

gulfly_] = If[0<y<b/2/lambda,0,2*G*lambda/b*(y-b/2/lambda)];

shelf[y_] = 0;
south[x_] = 0;
north[x_] = ((G*(mu+mu~2)-(eta+G*(mu~2)))/(mu+mu~2))*x"2

+(eta+G* (mu~2))/ (mu+mu~2) *x;
psi=Table[0.11,{i,n+2},{j,m+2}];
Dolpsil[[1,j+11]1=shelf[disy[[j11]1, {j, m}];
Dolpsil[n+2,j+1]1]= gulfldisy[[j111, {j, m}]l;
Dolpsi[[i+1,1]]=south[disx[[i]]], {i, n}l;
Dolpsil[[i+1,m+2]]= north[disx[[i]]1], {i, n}];
oldpsi = psi; error =1; ii=1;
newdisx=Append [Prepend[disx, 0], N[1]1];
newdisy=Append [Prepend[disy, 0], N[1/scalell;
Print['m = ", m, ; .n=_", nl;
While[error > 10--7,

Dolpsilli,j11=WL[j-111/a1-a12%psilli,j+111-a13+psil[i,j-11]-
al4*psi[[i+1,j]1]-a15*psi[[i~1,j]], {i,2,n+1}, {j,2,m+1}];

error=Max[Abs[psi-oldpsil];Print[ii," ", error];
Dol[oldpsil[[i, jll=psilli,jl1], {i, 2, n+1}, {j, 2, m+1}];
ii=ii+1];

AAl=ListContourPlot [Transpose[psi], PlotLabel->"psi ",
Contours-> 20, ColorFunction-> Hue,AspectRatio->3,
ColorOutput->CMYKColor]

PSPrint [AA1]

Display["graph6.ps", AA1]




